
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2008; 15:661–683
Published online 17 March 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla.587

Distributive smoothers in multigrid for problems with dominating
grad–div operators

F. J. Gaspar1,∗,†, J. L. Gracia1, F. J. Lisbona1 and C. W. Oosterlee2,3

1Applied Mathematics Department, University of Zaragoza, Zaragoza, Spain
2CWI—Center for Mathematics and Computer Science, Amsterdam, The Netherlands

3Delft Institute of Applied Mathematics (DIAM), Delft University of Technology, Delft, The Netherlands

SUMMARY

In this paper, we present efficient multigrid methods for systems of partial differential equations that are
governed by a dominating grad–div operator. In particular, we show that distributive smoothing methods
give multigrid convergence factors that are independent of problem parameters and of the mesh sizes in
space and time. The applications range from model problems to secondary consolidation Biot’s model.
We focus on the smoothing issue and mainly solve academic problems on Cartesian-staggered grids.
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1. INTRODUCTION

In this paper, we consider distributive smoothing methods for the multigrid solution of systems of
partial differential equations (PDEs) and deal, in particular, with operators that contain a dominating
gradient–divergence (grad–div) term. The gradient–divergence operator appears frequently in the
formulation of mathematical models in physics and engineering, such as in fluid flow, solid
mechanics, magnetohydrodynamics, or electromagnetism problems. Sometimes, this operator is
used to improve the numerical properties of particular discrete models. For example, Olshanskii
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and Reusken [1] showed that the grad–div term has a stabilization effect on the discrete Stokes
equations. This process was called ‘grad–div stabilization’.

Our interest lies in the efficient solution of some boundary-value problems governed by a
dominating grad–div operator by the multigrid solution method. Unfortunately, the usual multigrid
smoothers are not effective when applied to the grad–div problems considered here. As it was
pointed out, for example, in [2], the eigenspace associated with the minimal eigenvalue of the
discrete operator contains many eigenvectors, as any divergence-free vector is an eigenvector
corresponding to this minimal eigenvalue. These can be arbitrary oscillatory and can neither be
reduced by standard smoothing procedures nor be well represented on coarse grids.

Vassilevski and Wang [3] studied multigrid methods for solving the discrete system of equations
with a dominating grad–div term. Their approach builds upon local div–free functions and their
orthogonal complements in the finite element space. Arnold et al. [4] presented a multigrid
preconditioner for a discrete system of equations which arises when discretizing the variational
formulation of a grad–div equation with the lowest-order Raviart–Thomas finite element spaces
on triangles. We also point to the work by Hiptmair and Hoppe [5], who present a technique that
is essentially distributive smoothing in a finite element context to handle the troublesome div-free
components. Although in finite elements special elements have been proposed for this purpose, in
finite differences a stable discretization can be achieved by means of grid staggering.

In a series of papers, with different co-authors, we aim at solving systems of PDEs in a robust
and efficient way with the multigrid solution method. The systems of interest were often discrete
versions of the poroelasticity system, either discretized on a staggered or on a vertex-centered grid.
In the latter case, we developed stabilization techniques, for example, by first reformulating the
continuous system, so that the transformed system leads to a stable scheme in a natural way.

One focus of the poroelasticity system has been on a robust and efficient multigrid distribu-
tive smoothing method that resulted in a decoupled treatment of the different equations of the
PDE system during smoothing. As distributive smoothing methods are based on manipulations
with discrete operators, they have, in our experience so far, mainly been successful for mimetic
discretizations [6, 7]. An example is the staggered grid discretization, which mimics the properties
and action of continuous divergence and gradient operators under operator transformations.

In this paper, we continue our search for efficient distributive smoothers, this time for problems
with dominating gradient–divergence operators. We focus on a staggered grid arrangement for
discretization, for which the convergence of discrete schemes has been proved rigorously [8, 9].
We mention that the well-known local Fourier analysis (LFA) [10, 11] can also successfully be
applied to develop efficient multigrid methods for systems of PDEs with constant (or frozen)
coefficients. We do not use it in this paper; see, however, [12] for LFA results in the case of
distributive smoothing for systems of PDEs.

The plan of the paper is as follows. In Section 2, we discuss the multigrid methods and the
concept of distributive smoothing, in particular, with the help of a simple model system of equations.
In the sections to follow, a variety of systems of equations, each with a dominating grad–div
operator, are discussed, and the corresponding distributive smoothing methods are introduced.
Each section contains some numerical experiments on model problems. In Section 3, we discuss
linear elasticity for nearly incompressible materials, discretized on a staggered grid. Sections 4
and 5 focus on consolidation problems with poroelasticity models. There we discuss both linear
poroelasticity and secondary consolidation models and define the proper distributive smoothers.
Most of the problems are academic test problems with analytic solutions, but the last section also
discusses a 3D linear poroelasticity experiment with realistic stress boundary conditions.
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2. DISTRIBUTIVE SMOOTHING IN MULTIGRID FOR A MODEL PROBLEM

In this section, we describe and motivate our choice of multigrid smoother with the help of a
simple model system of equations containing a large parameter �:

−�graddivu+u= f in � (1)

where � is an open domain in R2, � is positive, and f∈L2(�)2. The essential boundary condition
is given by u·n=0 on ��, where n denotes the outer unit normal vector along the boundary ��.
Another relevant boundary condition is divu=0, which is the natural boundary condition. With
these boundary conditions, the corresponding boundary-value problem obviously has a unique
solution in H(div). One application of problem (1) is during the implementation of the sequential
regularization method (SRM) for the unsteady incompressible Navier–Stokes system, introduced
in [13]. The SRM method requires the solution of an equation of the form (1) at each time
step. In the framework of finite element methods, Arnold et al. [2] proved the convergence of
efficient multigrid methods using appropriate finite element spaces (Raviart–Thomas–Nedelec)
and appropriate smoothers. In the finite difference context, we will use mimetic discretizations on
staggered grids and distributive smoothers in order to obtain robust multigrid methods.

2.1. Discretization

We start defining the different grids and discrete operators used in the discretization of (1). As
the spatial domain, we consider the unit square �=(0,1)2 and for simplicity all the grids will be
uniform with the same mesh size h in both directions. We introduce the following meshes:

�n = {(ih, jh), i, j =0, . . . ,N }
�u = {((i+ 1

2 )h, jh), i=− 1
2 ,0,1, . . . ,N−1,N− 1

2 , j =0, . . . ,N }
�v = {(ih, ( j+ 1

2 )h), i=0, . . . ,N , j =− 1
2 ,0,1, . . . ,N−1,N− 1

2 }
�c = {((i+ 1

2 )h, ( j+ 1
2 )h), i, j =0,1, . . . ,N−1}

(2)

where h=1/N and N is a positive integer (see Figure 1).
Let us denote by �n,�u , and �v the set of interior nodes and by ��n,��u , and ��v the set of

boundary nodes of �n,�u , and �v , respectively. H�n ,H�u ,H�v
, and H�c then denote the spaces

Figure 1. Grids �u× and �v ◦ (left picture) and grids �n • and �c× (right picture).
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of grid functions defined on �n,�u,�v , and �c, respectively, and H�n ,H�u , and H�v are the
subspaces of H�n ,H�u , and H�v

of grid functions vanishing at the boundaries.
Next, we define discrete operators and start with the discrete divergence operator, divh :H�u ×

H�v
→H�n , which is defined in 2D by

(divh u)i, j =(ux )i, j +(vy)i, j , i, j =0, . . . ,N

where for the interior points,

(ux )i, j =h−1(ui+1/2, j −ui−1/2, j ), (vy)i, j =h−1(vi, j+1/2−vi, j−1/2)

and for the boundary points,

(ux )0, j = 2h−1(u1/2, j −u0, j ), j =0, . . . ,N

(ux )N , j = 2h−1(uN , j −uN−1/2, j ), j =0, . . . ,N

(vy)i,0 = 2h−1(vi,1/2−vi,0), i=0, . . . ,N

(vy)i,N = 2h−1(vi,N −vi,N−1/2), i=0, . . . ,N

The discrete gradient operator gradh :H�n →H�u ×H�v
is defined as gradh p=(gradxh p,

gradyh p)∈H�u ×H�v
, where for j =0, . . . ,N ,

(gradxh p)i+1/2, j =

⎧⎪⎪⎨⎪⎪⎩
h−1(pi+1, j − pi, j ), i=0, . . . ,N−1

p0, j , i=−1/2

−pN , j , i=N−1/2

and for i=0, . . . ,N ,

(gradyh p)i, j+1/2=

⎧⎪⎪⎨⎪⎪⎩
h−1(pi, j+1− pi, j ), j =0, . . . ,N−1

pi,0, j =−1/2

−pi,N , j =N−1/2

In the 2D case, we need the following two continuous operators:

rotu=−�u
�y

+ �v

�x
and rot�=

(
�w

�y
,−�w

�x

)
The corresponding discrete operators are defined by, roth :H�u ×H�v

→H�c

(rothu)i+1/2, j+1/2=h−1(ui+1/2, j +vi+1, j+1/2−ui+1/2, j+1−vi, j+1/2), i, j =0, . . .N−1

and

roth :H�c → H�u ×H�v , roth w=(rotxhw, rotyhw)

(rotxhw)i+1/2, j = h−1(wi+1/2, j+1/2−wi+1/2, j−1/2)

(rotyhw)i, j+1/2 = h−1(−wi+1/2, j+1/2+wi−1/2, j+1/2), i, j =1, . . . ,N−1
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We note that the grid operators defined previously are consistent with the following continuous
properties:

rotgrad=0, divrot=0

i.e. roth gradh p=0, ∀p∈H�n , divh roth w=0, ∀w∈H�c . With the discrete operators gradh and
divh , we easily propose a discrete version of problem (1). Operators roth and roth will be useful
in the construction of the distributive smoother.

2.2. Multigrid and smoothing method for model problem

Here, we develop efficient multigrid solvers for problems discretized on staggered grids. Multigrid
methods are widely accepted as highly efficient solvers for PDEs. Owing to the regularly structured
grid adopted in this model study, we can choose standard geometric grid coarsening, i.e. the
sequence of coarse grids is obtained by doubling the mesh size in each spatial direction, which is
indicated by a subscript ‘2h’. The coarse grid correction consists of geometric transfer operators
Rh,2h , P2h,h , and a direct coarse grid discretization of the continuous operator. As the prolongation
operators Pu

2h,h and Pv
2h,h , we apply the usual interpolation operators based on bilinear interpolation

of neighboring staggered grid coarse grid unknowns. At the u- and v-grid points, we consider
6-point restrictions with the nearest neighbors. In stencil notation, they are given by

Ru
h,2h

∧= 1

8

⎡⎢⎣
1 1

2 � 2

1 1

⎤⎥⎦
h

, Rv
h,2h

∧= 1

8

⎡⎢⎣
1 2 1

�

1 2 1

⎤⎥⎦
h

respectively, where � denotes the position on the coarse grid at which the restriction is applied [11].
For the system considered here, there is no benefit in using the Galerkin coarse grid discretization.

Geometric multigrid method yields textbook convergence rates, especially when the reduction
of high-frequency components of an error in the numerical approximation is associated with large
eigenvalues of an iterative solution method. This is true for matrices generated from common
stable discretizations of many nicely elliptic equations and ensures that smoothing methods such
as Gauss–Seidel or Jacobi dampen high-frequency error components and thus generate smooth
error.

Some of the simplest and most frequently used smoothers for elliptic problems, however, do
not yield effective multigrid methods for grad–div problems, because the eigenspace associated
with the lowest eigenvalue of the dominating grad–div operators contains many high-frequency
eigenfunctions, which cannot be presented well on a coarse mesh.

2.2.1. Distributive smoothing method. Decoupled, i.e. equationwise, smoothing for a discrete
system of equations is preferred for reasons of efficiency. If a system of equations consists of elliptic
and of other, non-elliptic, equations, decoupled smoothing easily allows us to choose different
iterative methods for the different operators appearing in the system. For many systems, however,
including those of interest here, equationwise smoothing directly on the original discrete system is
not sufficient, as indicated, for example, by LFA smoothing techniques [11]. Instead, one first has to
transform the discrete system such that equationwise smoothing on the transformed discrete system,
followed by a back-transformation to the original unknowns, brings excellent smoothing factors.
Equationwise, decoupled smoothing on a transformed system is called distributive smoothing.
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An easy way to describe a distributive smoothing method for Lhuh = fh , where Lh represents
a discretization of the continuous operator, is by means of a right preconditioner [14, 15]. In
distributive smoothing methods, we work with a transformed system LhChwh = fh (where uh =
Chwh), with Ch chosen such that the operator LhCh allows a decoupled smoothing procedure.
Distributive iteration is then given by

um+1
h =umh +ChBh(fh−Lhumh ) (3)

with Bh ≈(LhCh)
−1. We choose a basic iterative method, denoted by Bh above, for smoothing

each of the scalar equations of the transformed system.
Distributive smoothing methods for incompressible flow problems have been presented in

[14, 16] (see also [11]) and for the poroelasticity system in [17].
Here, we define for the discrete model problem:

−�gradh divh uh+uh = fh (4)

with � large and positive, a distributive smoother that permits us to decouple the unknowns of its
associated linear system. We introduce a new variable wh such that

uh =roth rothwh+ 1

�
wh (5)

Using the consistency properties of the discrete operators, the transformed system reads

−gradh divhwh+roth rothwh+ 1

�
wh = fh

where the first two terms represent the discretization of the vector Laplace operator. If we work
in Cartesian coordinates in 2D, the distributor reads

Ch =

⎛⎜⎜⎝−(�yy)h+ 1

�
Ih (�xy)h

(�xy)h −(�xx )h+ 1

�
Ih

⎞⎟⎟⎠
so that we obtain the transformed system:

LhCh =

⎛⎜⎜⎝−�h+ 1

�
Ih 0

0 −�h+ 1

�
Ih

⎞⎟⎟⎠ (6)

where Ih is the discrete identity operator. Note that the transformed system in Cartesian coordinates
is diagonal, and the Laplacian-type operators can be smoothed in a decoupled fashion with any
efficient smoother for −�h . Think of the well-known scalar version of red–black Gauss–Seidel
iteration, for example. In this paper, we will show that the multigrid convergence with distributive
smoothing based on transformation (5) converges satisfactorily for large values of �.
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2.2.2. Coupled smoothing method. Coupled smoothing of unknowns in a staggered grid arrange-
ment is typically done by updating sets of unknowns collectively. Pointwise smoothing means in
this staggered case ‘cellwise’ smoothing. A small matrix must be inverted for each cell. A coupled
pointwise Gauss–Seidel iteration for the discrete model system would update two unknowns in
a staggered arrangement simultaneously. An approach with some success in various applications,
however, locally updates all unknowns appearing in the divergence operator simultaneously. For
incompressible Navier–Stokes equations, this cellwise smoothing method is called the ‘Vanka
smoother’ after the author of the first paper [18]. For poroelasticity, we evaluated the Vanka
smoothers in [17] for staggered grid discretizations and in [19] for stabilized vertex-centered
discretizations. For staggered grid discretizations, we found that although distributive smoothing
gave excellent multigrid convergence independent of all problem parameters, the coupled smoother
showed a convergence dependency on the time step. For very small time steps, the multigrid conver-
gence degraded. An advantage of coupled smoothing was, however, that it also led to satisfactory
multigrid convergence on vertex-centered grids, whereas straightforward distributive smoothing
did not.

2.2.3. Numerical result for model problem. We end this introduction in multigrid and staggered
grids by considering a numerical multigrid experiment for model system (1). We consider distribu-
tive smoothing in this section. We will solve discrete equation (4) with �=104, on �=(0,1)2,
with right-hand side f =1 and boundary conditions u·n=0. The solution is symmetric in the
unknowns u and v. Figure 2 presents the u-component of the solution. The solution is large and
smooth.

The measure of convergence is related to the absolute value of the residual after the mth iteration
in the maximum norm over the two equations in the system:

resmh =|rm1,h |+|rm2,h |

Figure 2. Component u of the numerical solution of the grad–div model problem.
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Table I. F(1,1)-multigrid convergence factors, �h , and in brackets, the number of
iterations for the model problem (1).

32×32 64×64 128×128 256×256

�=1.0 0.11 (9) 0.11 (9) 0.11 (9) 0.11 (9)
�=102 0.11 (9) 0.11 (9) 0.11 (9) 0.11 (9)
�=104 0.11 (9) 0.11 (9) 0.11 (9) 0.11 (9)

where rmi,h is the residual associated to the i th equation of the system. The average reduction factor
�h is given by

�h = 5

√√√√ reslh
resl−5

h

(7)

where l denotes the final iteration. The stopping criterion is chosen as the absolute residual over all
unknowns to be less than 10−6. Table I presents the reduction factors and the number of iterations
required for multigrid F(1,1)-cycles, (meaning one pre- and one post-smoothing iteration). The
smoothing method for each of the equations in the transformed system is the red–black Gauss–
Seidel iteration. The table shows that the multigrid convergence with the distributive smoother is
independent of the size of parameter � and independent of mesh size h. These properties are highly
desirable and the average reduction factors of 0.11 are highly satisfactory. A converged solution
is obtained in a split second.

Remark
We would like to mention that a coupled Vanka smoother, centered at the cell centers, also shows
a multigrid convergence independent of the size of parameters � and h. The convergence factor for
an F(1,1)-cycle is about 0.19 in this case. The cost of this iteration is, however, approximately a
factor of 4 higher than with the distributive smoother.

3. LINEAR ELASTICITY, MIXED FORMULATION

In this section, we consider, as a next problem with a dominating grad–div operator, a linear
elasticity problem for homogeneous and isotropic, almost incompressible, material:

�rot rotu−(�+2�)graddivu = f, x∈�

u(x) = g, x∈�
(8)

where � and �, the Lamé coefficients, are related to Young’s modulus E and Poisson’s ratio � by

�= �E

(1+�)(1−2�)
, �= E

2(1+�)

It is well known that, in the incompressible limit where Poisson’s ratio � tends to 0.5 (or � tends to
infinity), the discretization needs to be stabilized and that the convergence rate of multigrid methods
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with standard smoothers deteriorates. In the incompressible limit, we deal with a dominating grad–
div operator. The construction of robust multigrid methods for this problem has been considered
by several authors. Schöberl [20] combined a specialized blockwise smoother with stable intergrid
transfer operators to get a robust multigrid for nearly incompressible elasticity by the P2/P0 finite
element discretization. Wieners [21] transferred a saddle point smoother for the Stokes problem [22]
to the elasticity system and obtained a robust multigrid method for nearly incompressible elasticity
problems.

We depart from a stable discretization, which is given by a mixed formulation, see, for example,
Brezzi–Fortin [23], introducing a new variable p=−�(divu) in (8):

�rot rotu−2�graddivu+grad p = f, x∈�

divu+�−1 p = 0, x∈�

u(x) = g, x∈�

(9)

The corresponding discrete problem reads as

�roth roth uh−2�gradh divh uh+gradh ph = fh

divh uh+�−1 ph = 0
(10)

The distributive smoothing procedure we propose here for discrete system (10) is defined in the
following way: First, we introduce the help variables wh =(wh,qh) as(

uh

ph

)
=Ch

(
wh

qh

)
=
(

I −gradh

�divh −2�divh gradh

)(
wh

qh

)
The transformed system, LhChwh = fh , then reads⎛⎜⎝�(roth roth−gradh divh) 0(

1+ �

�

)
divh −

(
1+ 2�

�

)
divh gradh

⎞⎟⎠(wh

qh

)
=
(
fh

0

)

Hence, we deal with a triangular system during smoothing and have Laplace-type operators on
its diagonal. Basic pointwise Gauss–Seidel smoothing procedures for the operators on the main
diagonal are the methods of choice, where we start with the (1,1)-block and use these results
in block LCh,2,1 before processing the (2,2)-block. Its excellent smoothing properties can be
confirmed, for example, by LFA techniques.

We consider an elasticity problem with a simple analytic solution given by

u(x, y) = cos(�x)sin(�y)

v(x, y) = sin(�x)cos(�y)

Source term f and boundary conditions are consequently determined. The stopping criterion is
chosen as the absolute residual over all unknowns to be less than 10−5. The smoothing method
for each of the equations in the transformed system is again the red–black Gauss–Seidel iteration.
Table II presents the F(1,1) multigrid convergence factors, �h , and the number of multigrid
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Table II. F(1,1) multigrid convergence factors, �h , and in brackets the number of iterations, for different
�-values in the elasticity test problem.

Grid 32×32 64×64 128×128 256×256

�=0.25 0.13 (14) 0.13 (14) 0.13 (14) 0.13 (14)
�=0.4 0.13 (14) 0.13 (14) 0.13 (14) 0.13 (14)
�=0.45 0.13 (15) 0.13 (14) 0.13 (14) 0.13 (14)
�=0.49 0.13 (15) 0.13 (15) 0.13 (15) 0.13 (15)
�=0.499 0.13 (16) 0.13 (16) 0.13 (16) 0.13 (16)

iterations required with the proposed smoother for Young’s modulus E=3×104 and different
values of �. A fast and robust multigrid convergence in the limit �→0.5 can be observed. We
also mention that the V (1,1)-cycle also performs very well with convergence factors of 0.18 for
�=0.499 for different mesh sizes.

4. SECONDARY CONSOLIDATION BIOT’S MODEL

Classical soil consolidation theory addresses the time-dependent coupling between the deformation
of a porous matrix and the fluid flow inside. The porous matrix is supposed to be saturated by
the fluid phase and the flow is governed by Darcy’s law. The state of the continuous medium is
characterized by the knowledge of the displacements and the fluid pressure at each point of the
domain. One assumes the material’s solid structure to be linearly elastic, initially homogeneous,
and isotropic; the strains imposed within the material are small. Correspondingly, the displacements
are assumed to be small. The consolidation process under 1D conditions was first investigated by
Terzagui [24] and a phenomenological model was proposed and analyzed by Biot [25] in 3D.

For a rather general consolidation process, an elastic response of the soil skeleton to the loads
is assumed. A change in stress will generate a deformation and an excess of the pore pressure.
The dissipation of pressure will then result in a final deformed state of the porous matrix. This is,
however, not really realistic for situations in which the soil deformation continues even though all
excess pore pressure has been dissipated. This phenomenon is typical in the consolidation of clay
soils. The presence of this process, the secondary consolidation, can be explained by assuming that
the soil skeleton is governed by a viscoelastic behavior. We, therefore, consider Biot’s secondary
consolidation model. A mathematical model has been formulated by Murad and Cushman [26] and
reported in [27]. If we denote by u the displacement vector and by p the pore pressure of the fluid,
the governing equations for a homogeneous, isotropic, and incompressible medium, describing
secondary consolidation, read

−�∗grad(divu)t −divr+�grad p = g(x, t)

�(divu)t −��p = f (x, t)

r(u)=�(divu)I +2�e(u), x∈�, 0<t � T

(11)

where (·)t denotes the time derivative, �∗ is the secondary consolidation parameter, � and � are
the Lamé coefficients, � is the hydraulic conductivity, � is the Biot–Willis coefficient, I denotes
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the identity operator, and e(u) is the strain tensor

	i, j (u)= 1

2

(
�ui
�x j

+ �u j

�xi

)
(12)

In the sequel, we will assume that �=1, f (x, t)∈L2(�) and g(x, t)∈(L2(�))2.
To complete the formulation of a well-posed problem, we must add appropriate boundary and

initial conditions. For this purpose, let us take two partitions of the boundary � in complementary
parts {�d ,� f } and {�c,�t }. We will suppose that the clamped boundary �c has a non-null measure.
Common boundary conditions for a solution of problem (11) are

p = 0 on �d

k(∇ p) ·n = 0 on � f

u = 0 on �c

�∗(divu)tn+rn−�pn = t on �t

(13)

where n is the unit outward normal to the boundary �. At initial time, t=0, the following initial
condition is given

(divu)(x,0)=0, x∈� (14)

Existence and uniqueness of the solution of problem (11)–(14) have been analyzed by Showalter
[28] and Barucq et al. [29].

After semi-discretization in time using a two-weighted level scheme, we encounter, also here,
a problem with a dominant grad–div operator at each time level, if the time step is sufficiently
small.

4.1. Discrete formulation

The numerical solution of the Biot problems is usually obtained by using finite element methods;
see, for instance, the monograph by Lewis and Schrefler [30]. Problems where the solution is
smooth are satisfactorily solved by standard discretizations. Nevertheless, when strong pressure
gradients occur, these methods are unstable in the sense that strong non-physical oscillations appear
in the approximation of the pressure field. It is well known that this phenomenon appears at the
beginning of the consolidation process when a load is applied on a part of the boundary. After
this initial phase, the solution shows a much smoother behavior. The oscillatory behavior of the
FEM can be reduced if stabilized methods are used. As for the Stokes problem, approximation
spaces for the vector and the scalar fields, satisfying the LBB stability condition [31], can be
used. This approach has been analyzed in [32–34] by Murad et al. and Mira et al. [35] for the
quasi-static Biot’s model. However, these methods still present pressure oscillations, when very
sharp boundary layers occur; see [8], where the Taylor–Hood method on the 1D Terzaghi problem
has been evaluated. In [36] a combination of the least-square mixed finite element method and
local grid refinement near the load boundary was used to obtain non-oscillatory solutions.

Standard finite difference schemes, as finite elements, suffer from the same unstable behavior
in their pressure approximation. A reason for this instability has been identified in [8, 9], where
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the use of a staggered grid discretization for poroelasticity problems was proposed, leading to
oscillation-free solutions for any value of the discretization parameters. Stabilization techniques,
based on either a problem reformulation or on the addition of artificial terms to the original
equations, can be found in [19, 37], respectively.

The approach for the numerical approximation of the secondary consolidation problem (11) here
is based on staggered finite differences. Often, if the problem of interest permits, staggered finite
difference methods lead to discretizations that mimic the continuous problem, so that the main
properties of the continuous problem are preserved in the discrete case. The consolidation problems
of interest are typically defined on large block-shaped domains, ideally suited for Cartesian grids
and finite differences. This discretization on Cartesian grids can also be combined with local
refinement in order to capture the pressure boundary layer more accurately. We do not employ
local refinement here, but the multigrid components proposed can naturally be incorporated in the
multilevel adaptive technique [38] or the full adaptive composite method [39].

The secondary consolidation problem (11) can be expressed in a coordinate-free form using the
operators divergence, gradient, and rotation in the following way:

−�∗grad(divu)t +�rot rotu−(�+2�)graddivu+grad p = g

(divu)t −�divgrad p= f (x, t), x∈�, 0<t � T
(15)

where the operators rot and rot were defined in the 2D case in Section 2.1. For simplicity in
our presentation, we consider Dirichlet boundary conditions for displacements and pressure. We
assume a unique sufficiently regular solution in (0,T ]×� to exist.

In poroelasticity problems, pressure values are often prescribed at the physical boundary. Hence,
pressure points in the staggered grid should be located at the physical boundary, and the displace-
ment points are then defined at the cell faces. The staggered discretization in space has been
described in various publications [9, 40], including a proof of convergence.

For (15), we also consider a staggered grid in time. Let M be a positive integer, 
=T/M the
time step, and {tm =m
}Mm=0, {tm+1/2=(m+1/2)
}M−1

m=0 the time levels where the displacements
and the pressure are approximated, respectively (see Figure 3). On this staggered mesh in time,
using a second-order two-weighted level scheme, we define the following discrete problem:

−�∗ gradh divh
um+1
h −umh



+(�roth roth−(�+2�)gradh divh)

(
um+1
h +umh

2

)

+gradh p
m+1/2
h =

(
gm+1
h +gmh

2

)

divh
um+1
h −umh



−divh gradh p

m+1/2
h = f m+1/2

h , m=0, . . .M−1

divh u0h(0) = 0

where the discrete operators have been introduced in Section 2.
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Figure 3. Staggered mesh in time. Grid points for displacement • at time tm
and for pressure ◦ at time tm+1/2.

4.2. Distributive smoothing, secondary consolidation

For the secondary consolidation problem, at each time step we have to solve the discrete
problem:


�roth roth uh−(2��+
(�+2�))gradh divh uh+2
grad ph = g̃h (16)

divh uh−
�divh gradh ph = f̃h (17)

For the distributive smoothing of system (16)–(17), we define new help variables by

(
uh

ph

)
=
⎛⎜⎝ I −gradh(

�∗



+ �+�

2

)
divh −

(
�∗



+ �+2�

2

)
divh gradh

⎞⎟⎠(wh

qh

)

The transformed system, LhCh , for secondary consolidation then reads

LhCh =
⎛⎜⎝ 
�(roth roth−gradh divh) 0

divh−�

(
�∗+ (�+�)


2

)
�h divh −�h+�

(
�∗+ (�+2�)

2



)
�2
h

⎞⎟⎠
This transformed operator is again triangular; hence, it is suited for decoupled smoothing. The
operators occurring on the main diagonal are of Laplace and biharmonic type. By means of another
help variable, we are able to split the biharmonic operator up, solely for smoothing and deal only
with scalar Laplace-like operators (see, for example, [17]). Scalar red–black Gauss–Seidel iteration
can be the smoother of choice here.

4.2.1. Coupled smoothing method. Coupled cellwise smoothing of unknowns in a staggered
grid arrangement for poroelasticity is performed by updating the five unknowns (pressure
pi, j , 2 times uh- and vh-displacements, ui+1/2, j ,ui−1/2, j ,vi, j+1/2,vi, j−1/2), centered around
a pressure point simultaneously. A small 5×5-matrix must be inverted for each cell. ‘Cell-
wise’ smoothing is shown in Figure 4(a). Note that the word ‘cell’ does not relate to a grid
cell here, as the unknowns are centered around a pressure point. In one smoothing itera-
tion, all displacement unknowns are updated twice, whereas pressure unknowns are updated
once.
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(a) (b)

Figure 4. Five unknowns coupled smoothing: (a): cellwise and (b): x-linewise; ×, ph ; ◦, uh ; •, vh .

Figure 4(b) presents the linewise version of this smoother. The linewise versions can be
performed in various orderings. The block matrices to be inverted are somewhat involved.

4.3. Numerical secondary consolidation experiment

We consider a 2D problem (15) defined on the unit square with Dirichlet boundary conditions. The
source terms g(x, t) and f (x, t) and the boundary and initial conditions are such that an analytic
solution results:

u(x, y, t) = cos(�x)sin(�y)sin(�t)

v(x, y, t) = sin(�x)cos(�y)sin(�t)

p(x, y, t) = −2(�+2�)�sin(�x)sin(�y)sin(�t)−2�2�∗ sin(�x)sin(�y)cos(�t)

To approximate this solution, we use a staggered grid in time and in space as described in
Section 4.1. Second-order convergence in maximum norm for displacements and pressure is
obtained for this problem with smooth analytical solution. In the numerical experiments, the
parameter settings chosen are �=�=�∗ =k=1 at final time T =0.5.

At each time level, the corresponding linear system is solved by multigrid. The measure of
convergence is related to the absolute value of the residual after the mth iteration in the maximum
norm over the three equations in the system:

resmh =|rm1,h |+|rm2,h |+|rm3,h |
where rmi,h is the residual associated with the i th equation of the system. The multigrid conver-
gence factor, �h , is again given by (7). The stopping criterion is chosen as the absolute residual
over all unknowns to be less than 10−6. A matrix-free, stencil-based version of multigrid
is used.

In Table III we display the V (1,1)- and F(1,1)-multigrid convergence factors, �h , for several
smoothers employing different time steps (
=10−1,10−2,10−3). We only present the multigrid
convergence of the first time step as it is representative for the other time steps as well. We compare
the coupled Gauss–Seidel and Vanka smoothers, in their cellwise (GS point,V point) and the
line-cell (GS line,V line) versions, with the pointwise and linewise versions of the distributive
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Table III. V (1,1)- and F(1,1)-multigrid convergence factors, �h , for the secondary consolidation problem.

Smoother

Cycle 
 GS point GS line V point V line D point D line

V (1,1) 10−1 0.783 0.259 0.658 0.216 0.389 0.113
10−2 0.901 0.766 0.836 0.720 0.397 0.113
10−3 0.902 >1 0.810 0.786 0.403 0.114

F(1,1) 10−1 0.734 0.212 0.575 0.182 0.230 0.010
10−2 0.877 0.739 0.844 0.690 0.231 0.011
10−3 0.926 0.843 0.918 0.785 0.233 0.007

Figure 5. Multigrid convergence F(1,1)-cycle, 
=10−3, pointwise-distributive.

smoothing methods (D point,D line). From Table III, we observe that the GS point and V point
smoothers are not appropriate for this kind of problem and that the GS line and V line smoothers
have a satisfactory behavior for large values of 
. However, their performance degrades when the
time step becomes sufficiently small. The distributive smoothers, on the contrary, show a robust
behavior independent of the size of the time step. Moreover, the D line smoother gives significantly
better convergence factors than the D point smoother.

We now focus on the D point and D line smoothers with 
=10−3 and varying the meshsize in
space. The F(1,1)-cycle is applied at each time step. The multigrid convergence during the first
time step for different numbers of spatial mesh points 32×32, . . . ,256×256 is presented in Figures
5 and 6, respectively, for D point and D line. In both figures, we observe that, independent of the
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Figure 6. Multigrid convergence F(1,1)-cycle, 
=10−3, linewise-distributive.

mesh size, the residual in norm is very small after very few iterations showing the robustness and
efficiency of these smoothers. The central processing unit time for this problem on a Pentium IV,
2.6MHz, is 1.5 s per time step on a 1282-grid and 6 s per time step on a 256-grid. As in [17], we
also expect here to obtain similar multigrid convergence factors for a wide range of poroelasticity
parameters.

5. 3D LINEAR POROELASTICITY PROBLEM

The final grad–div dominating problem treated in this paper is a 3D linear poroelasticity problem
for a nearly incompressible material. The mathematical formulation of this model is a particular
case of the system considered in (16) corresponding to parameter �∗ =0. Hence, the classical
Biot’s primary consolidation problem can be expressed in coordinate-free form as

�rotrotu−(�+2�)graddivu+grad p = g(x, t)

(divu)t −�divgrad p = f (x, t), x∈�, 0<t�T (18)

where the operator rot is defined in the usual way in 3D. With �	� we deal with grad–div
dominating problems.

Here, we briefly outline the staggered grid in 3D, as we will show that the generalization of the
multigrid solution method for linear poroelasticity to 3D is straightforward.
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The 3D staggered grid is composed of the following types of grid points:

�n = {(ih, jh,kh), i, j,k=0, . . . ,N }
�u = {((i+ 1

2 )h, jh,kh), i=− 1
2 ,0,1, . . . ,N−1,N− 1

2 , j,k=0, . . . ,N }
�v = {(ih, ( j+ 1

2 )h,kh), i,k=0, . . . ,N , j =− 1
2 ,0,1, . . . ,N−1,N− 1

2 }
�w = {(ih, jh, (k+ 1

2 )h), i, j =0, . . . ,N , k=− 1
2 ,0,1, . . . ,N−1,N− 1

2 }
�′
u = {(ih, ( j+ 1

2 )h, (k+ 1
2 )h), i=0, . . . ,N , j,k=− 1

2 ,0,1, . . . ,N−1,N− 1
2 }

�′
v = {((i+ 1

2 )h, jh, (k+ 1
2 )h), j =0, . . . ,N , i,k=− 1

2 ,0,1, . . . ,N−1,N− 1
2 }

�′
w = {((i+ 1

2 )h, ( j+ 1
2 )h,kh), k=0, . . . ,N , i, j =− 1

2 ,0,1, . . . ,N−1,N− 1
2 }

(19)

The discrete operators used are

divh : H�u ×H�v
×H�w

→H�n (20)

gradh : H�n →H�u ×H�v
×H�w

(21)

roth : H�u ×H�v
×H�w

→H�′
u
×H�′

v
×H�′

w
(22)

roth : H�′
u
×H�′

v
×H�′

w
→H�u ×H�v

×H�w
(23)

The divergence operator is naturally approximated by a central discretization of the displacements
in a cell and the other discrete operators are defined in a standard way in the framework of
staggered grids so that the compatibility relations roth gradh =0, divh roth =0, are satisfied.

If we use a uniform grid for the discretization in time with step size 
>0 and employ an implicit
Euler scheme, at each time step the following problem has to be solved:

�roth roth u
m+1
h −(�+2�)gradh divh u

m+1
h +gradh p

m+1
h = g̃h (24)

divh u
m+1
h −
�divh gradh p

m+1
h = f̃h (25)

5.1. Distributive smoothing, linear poroelasticity

We consider distributive smoothing methods for the 3D linear poroelasticity problem with domi-
nating grad–div operator. The distributive smoother for the discrete system of linear poroelasticity
has been defined and evaluated in detail in 2D in [12, 17]. Here, we show that, as the multigrid
convergence with this smoother is independent of problem parameters, it also works well in the
case of dominating grad–div operators. We perform 3D computations here.

For distributive smoothing of system (24) and (25), we define the discrete help variables to be(
uh

ph

)
=
(

I −gradh

(�+�)divh −(�+2�)divh gradh

)(
wh

qh

)
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The transformed system, LhCh , for primary consolidation then reads

LhCh =
(

�(roth roth−gradh divh) 0

divh−�(�+�)
�h divh −�h+�(�+2�)
�2
h

)
Working in Cartesian coordinates in the 3D case, the distributor reads

Ch =

⎛⎜⎜⎜⎜⎝
Ih 0 0 −(�x )h/2

0 Ih 0 −(�y)h/2

0 0 Ih −(�z)h/2

(�+�)(�x )h/2 (�+�)(�y)h/2 (�+�)(�x )h/2 −(�+2�)�h

⎞⎟⎟⎟⎟⎠ (26)

with identity Ih . Hence, the transformed system reads

LhCh =

⎛⎜⎜⎜⎜⎜⎝
−��h 0 0 0

0 −��h 0 0

0 0 −��h 0

LC4,1
h LC4,2

h LC4,3
h �(�+2�)
�2

h−�h

⎞⎟⎟⎟⎟⎟⎠ (27)

with

LC4,1
h = (�x )h/2−�(�+�)
((�xxx )h/2+(�xyy)h/2+(�xzz)h/2)

LC4,2
h = (�y)h/2−�(�+�)
((�xxy)h/2+(�yyy)h/2+(�yzz)h/2)

and

LC4,3
h =(�z)h/2−�(�+�)
((�xxz)h/2+(�yyz)h/2+(�zzz)h/2)

where the central discrete operators read in stencil notation

(�x )h/2
∧= 1

h
[−1 � 1]h, (�xxx )h/2

∧= 1

h3
[−1 3 � −3 1]h

(�xxy)h/2
∧= 1

h3

⎡⎢⎣
1 −2 1

�

−1 2 −1

⎤⎥⎦
h

with � denoting the position on the grid at which the stencil is applied. The other discrete operators
are given by analogous stencils.

The discrete linear poroelasticity system may contain anisotropies depending on the choice of
the Lamé coefficients. The smoothing properties for the system are, however, not affected by these
scalar anisotropies.

5.2. Numerical 3D linear poroelasticity experiments

Here, two 3D numerical experiments are considered.
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5.2.1. Squeezing a sponge. The first numerical problem corresponds to the simulation of a rubber
sponge saturated with water with edges of length 2L . The origin is placed at the center of the
sponge and the coordinate axes are parallel to its edges. A load applied to it will produce a
compression and the water will be squeezed out of the pores. This problem can be considered as a
3D generalization of the 1D Terzaghi problem [24]. The analytic solution of this problem is given
by (see [41])

u(x, t) = u0
L
x+L

∞∑
k=1

�k sin

(
k�x

L

)
exp

(
−k2�2t

C

)

p(x, t) = (�+2�)
∞∑
k=1

�kk�exp

(
−k2�2t

C

)(
cos

(
k�x

L

)
+cos

(
k�y

L

)
+cos

(
k�z

L

))
where u0 is a given constant value, C= L2(�(�+2�))−1, and �k =(−1)k2u0(Lk�)−1. The compo-
nents v and w are calculated by replacing x for y and z, respectively. In Table IV, we display the
convergence factors, �h , and the number of iterations for different grids and values of �, with �
tending to 0.5. We observe the robustness with respect to the parameters and good convergence
for � close to 0.5 (the grad–div dominating problem).

5.2.2. 3D footing problem. The last problem is a true 3D footing problem. The simulation domain
is a 64×64×64m block of porous soil, �=(−32,32)×(−32,32)×(0,64), as in Figure 7.

Table IV. F(2,1) multigrid convergence factors, �h , and in brackets, the number of iterations, for different
�-values in the poroelasticity problem: squeezing a sponge.

Grid 16×16×16 32×32×32 48×48×48 64×64×64

�=0.25 0.07 (11) 0.07 (11) 0.07 (11) 0.07 (12)
�=0.4 0.07 (11) 0.07 (11) 0.07 (12) 0.07 (12)
�=0.45 0.07 (11) 0.07 (12) 0.07 (12) 0.07 (12)
�=0.49 0.07 (12) 0.07 (12) 0.07 (13) 0.07 (13)
�=0.499 0.07 (13) 0.07 (13) 0.07 (14) 0.07 (14)

Figure 7. Domain of the 3D footing problem.
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Table V. Material parameters for the 3D poroelastic problem.

Property Value Unit

Young’s modulus 3×104 N/m2

Poisson’s ratio 0.45 —
Permeability 10−7 m2

Fluid viscosity 10−3 Pa s

Figure 8. Numerical solution for pressure with the corresponding
deformation at time=0.5 with a 323-mesh.

At the base of this domain, the soil is assumed to be fixed while at some centered upper part
of the domain a uniform load of intensity �0=0.1N/m2 is applied in a square of area 32×32m2.
The whole domain is assumed free to drain. The material properties of the porous medium are
given in Table V.

In Figure 8, we show the numerical solution for the pressure and the corresponding deformation
obtained with a 323-mesh at final time T =0.5. The F(2,1)-cycle is applied at each time step with
a line distributive smoother. The multigrid convergence for different numbers of spatial mesh points
163, 323, 483, and 643 is presented in Figure 9. We again confirm the robustness and efficiency
of this smoother.

6. CONCLUSION

For systems of equations with a dominating grad–div term, the convergence factor of basic multigrid
methods increases very quickly as the mesh size approaches zero. The reason is that some of the
oscillatory eigenvectors lie at the low end of the spectrum. Basic smoothing methods perform
well on the oscillatory eigenvectors at the high end of the spectrum. When not all oscillatory
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Figure 9. Multigrid convergence F(2,1)-cycle for the 3D footing problem, 
=0.5, linewise-distributive.

error components are reduced well enough, a coarse grid correction is useless, and multigrid
does not converge well enough. By means of distributive smoothing methods, it is possible to
design efficient smoothing procedures for some grad–div-dominated operators presented. After a
transformation of the system, we can reduce all the high-frequency error components appearing
in the systems of interest. The choice of discretization is an important one: On a staggered grid
with finite differences the discrete divergence, curl, and gradient operators have similar properties
as their continuous counterparts. This forms the basis for the success of distributive smoothing
methods. Numerical experiments on model problems confirm this. For relatively complex systems
of equations, we were able to produce textbook multigrid efficiency.

The distributive smoothers introduced in this paper heavily rely on transformations with discrete
operators. It may, therefore, be nontrivial to generalize them to PDE problems with varying
coefficients, as, for example, in [42]. However, since these smoothers can be implemented based
only on local stencils, an idea for generalization is to apply the transformations locally. We have not
yet tested this approach. Another generalization to be discussed is irregularly shaped domains. This
should be possible with discretizations that preserve the important operator properties needed for
distributive smoothing. Mimetic discretizations on triangular grids, for example, are candidates for
efficient geometric multigrid methods based on this type of smoothing. This is part of forthcoming
work.
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20. Schöberl J. Multigrid methods for a parameter dependent problem in primal variables. Numerische Mathematik
1999; 84:97–119.

21. Wieners C. Robust multigrid methods for nearly incompressible elasticity. Computing 2001; 64:289–306.
22. Braess D, Sarazin R. An efficient smoother for the Stokes problem. Applied Numerical Mathematics 1997;

23:3–19.
23. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: Berlin, 1991.
24. Terzaghi K. Theoretical Soil Mechanics. Wiley: New York, 1943.
25. Biot M. General theory of three dimensional consolidation. Journal of Applied Physics 1941; 12:155–169.
26. Murad MA, Cushman JH. Multiscale flow and deformation in hydrophilic swelling porous media. International

Journal of Engineering Science 1996; 3:313–338.
27. Showalter RE. Diffusion in deforming porous media. Dynamics of Continuous Discrete and Impulsive Systems—

Series A: Mathematical Analysis 2003; 10:661–678.
28. Showalter RE. Diffusion in poroelastic media. Journal of Mathematical Analysis and Applications 2000; 251:

310–340.
29. Barucq H, Madaune-Tort M, Saint-Macary P. On nonlinear Biot’s consolidation models. Nonlinear Analysis 2005;

63:985–995.
30. Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation

of Porous Media. Wiley: New York, 1998.
31. Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange

multipliers. RAIRO—Modelisation Mathematique et Analyse Numerique 1974; 8:129–151.
32. Murad MA, Loula AFD. Improved accuracy in finite element analysis of Biot’s consolidation problem. Computer

Methods in Applied Mechanics and Engineering 1992; 95:359–382.
33. Murad MA, Loula AFD. On stability and convergence of finite element approximations of Biot’s consolidation

problem. International Journal for Numerical Methods in Engineering 1994; 37:645–667.
34. Murad MA, Thomée V, Loula AFD. Asymptotic behaviour of semi discrete finite-element approximations of

Biot’s consolidation problem. SIAM Journal on Numerical Analysis 1996; 33:1065–1083.

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:661–683
DOI: 10.1002/nla



DISTRIBUTIVE SMOOTHERS IN MULTIGRID 683

35. Mira P, Pastor M, Li T, Liu X. A new stabilized enhanced strain element with equal order of interpolation for
soil consolidation problems. Computer Methods in Applied Mechanics and Engineering 2003; 192:4257–4277.

36. Korsawe J, Starke G, Wang W, Kolditz O. Finite element analysis of poro-elastic consolidation in porous media:
standard and mixed approaches. Computer Methods in Applied Mechanics and Engineering 2006; 195:1096–1115.

37. Gaspar FJ, Lisbona FJ, Oosterlee CW, Vabishchevich PN. An efficient multigrid solver for a reformulated version
of the poroelasticity system. Computer Methods in Applied Mechanics and Engineering 2007; 196:1447–1457.

38. Brandt A. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 1977; 31:
333–390.

39. McCormick SF. Multilevel Adaptive Methods for Partial Differential Equations. Frontiers in Applied Mathematics,
vol. 6. SIAM: Philadelphia, 1989.

40. Gaspar FJ, Gracia JL, Lisbona FJ, Vabishchevich PN. A stabilized method for a secondary consolidation Biot’s
model. Numerical Methods for Partial Differential Equations 2008; 24:60–78.

41. Kaasschieter EF, Frijns AJH. Squeezing a sponge: a three-dimensional analytic solution in poroelasticity.
Computational GeoSciences 2003; 7:49–59.

42. Ewing RE, Iliev OP, Lazarov RD, Naumovich A. On convergence of certain finite volume difference discretizations
for 1D poroelasticity interface problems. Numerical Methods for Partial Differential Equations 2007; 23:652–671.

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:661–683
DOI: 10.1002/nla


